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a b s t r a c t

Experiments that study complex real world systems in business, engineering and

sciences can be conducted at different levels of accuracy or sophistication. Nested

space-filling designs are suitable for such multi-fidelity experiments. In this paper, we

propose a systematic method to construct nested space-filling designs for experiments

with two levels of accuracy. The method that makes use of nested difference matrices

can be easily performed, many nested space-filling designs for experiments with two

levels of accuracy can thus be constructed, and the resulting designs achieve stratifica-

tion in low dimensions. In addition, the proposed method can also be used to obtain

sliced space-filling designs for conducting computer experiments with both qualitative

and quantitative factors.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction and preliminaries

The experiments with various levels of accuracy or fidelity have become popular in practice because of its great value.
They have been widely used in business, engineering and sciences to study the complex real world systems and attracted a
recent surge of interests. Study of multi-fidelity experiments has been made to tackle the experimental planning. Nested
space-filling designs are proposed for multi-fidelity experiments (Qian et al., 2009b). Qian et al. (2009a,b) and Qian and Ai
(2010) constructed some nested space-filling designs for experiments with two levels of accuracy, i.e. the low-accuracy
experiment (LE) and the high-accuracy experiment (HE), where HE is more accurate but more expensive than LE. The
problem of modeling data from HE and LE has been discussed in Goldstein and Rougier (2004), Higdon et al. (2004),
Kennedy and O’Hagan (2000, 2001), Reese et al. (2004), Qian et al. (2006), and Qian and Wu (2008). These methods of
building surrogate models are mainly based on flexible Gaussian process models (Sacks et al., 1989; Welch et al., 1992;
Santner et al., 2003; Fang et al., 2005).

Let Sðn,mÞ be a space-filling design with n runs and m factors, each having n equidistant levels, we call S achieving

stratification on d� � � � � d|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
k

grids in krm dimensions for some integer d, if for any k dimensional projection of S, S½i1, . . . ,ik�,

its points locate evenly in d� � � � � d|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
k

grids, i.e., there are n=dk points in each grid. If n¼ dk, we call S achieving the

maximum stratification on d� � � � � d|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
k

grids in k dimensions. The purpose of this paper is to construct two-fidelity
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experiments that are called the LE (Dl) and the HE (Dh) based on the three principles that were proposed by Qian et al.
(2009b):
�
 Economy: the number of points in Dh is smaller than the number of points in Dl;

�
 Nested relationship: Dh is nested within Dl, i.e., Dh � Dl;

�
 Space-filling: both Dh and Dl achieve stratification in low dimensions.
Qian et al. (2009b) first explicitly proposed the notion of nested space-filling designs and constructed such designs by
making use of Galois fields and orthogonal arrays. Qian et al. (2009a) further presented another method to construct
nested space-filling designs with the help of nested difference matrices. But the cases of nested difference matrices they
constructed are limited. Qian and Ai (2010) constructed a new sampling scheme, called nested lattice sampling, with the
knowledge of Galois field and incomplete pairwise orthogonal Latin squares. Haaland and Qian (2010) proposed a
construction method of nested space-filling designs for multi-fidelity computer experiments based on existing
ðt,sÞ-sequences. The designs constructed in these four papers can achieve stratification in two dimensions. While, Qian
(2009) used special permutations to construct nested Latin hypercubes, which achieve stratification only in one
dimension. In this paper, we will present an easy method to construct more nested difference matrices. Nested space-
filling designs for experiments with two levels of accuracy can thus be constructed from these nested difference matrices
directly.

Now we present some basic concepts, notation and lemmas that will be used in the following sections.
Galois field. The set of residues modulo a prime number p, f0;1, . . . ,p�1g, forms a field of p elements under addition ‘þ ’

and multiplication modulo p, which is called a Galois field, denoted as GF(p). Knowing that the order of a Galois field must
be a power of a prime, we now show how to obtain a Galois field of order s¼ pu for any prime number p and any positive
number u. Let gðxÞ ¼ b0þb1xþ � � � þbuxu, where bj 2 GFðpÞ and bu¼1, be an irreducible polynomial of degree u. Then the set
of all polynomials of degree u�1 or lower, fa0þa1xþ � � � þau�1xu�19aj 2 GFðpÞg, is a Galois field GFðpuÞ of order pu under
addition and multiplication of polynomials modulo g(x). For any polynomial f(x) with coefficients from GF(p), there exist
unique polynomials q(x) and r(x) such that f ðxÞ ¼ qðxÞgðxÞþrðxÞ where the degree of r(x) is smaller than u. This r(x) is the
residue of f(x) modulo g(x), which is usually written as f ðxÞ ¼ rðxÞ (mod g(x)).

Orthogonal array and difference matrix. An orthogonal array OAðn,m,s,tÞ is an array of size n�m, where each column has
entries from f0, . . . ,s�1g, such that in any n� t subarray every possible t-tuple occurs an equal number of times l as a row,
and t is called the strength, l is called the index of the orthogonal array. A difference matrix Dðr,c,sÞ is an r� c array with
entries from a finite Abelian group ðA,þÞ of s elements such that every element of A appears equally often in the vector
difference between any two columns of the array (Bose and Bush, 1952).

An easy way to construct a difference matrix is as follows.

Lemma 1 (Hedayat et al., 1999). Let the s elements of GF(s) be a0, . . . ,as�1, and D be the s� s multiplication table of this field.

Then D is a difference matrix Dðs,s,sÞ.

Nested difference matrix and Kronecker sum. Let D be a difference matrix Dðr2,c,s2Þ, suppose there is a subarray of D,
denoted by D1 with r1 rows, and a projection d that collapses the s2 levels of D into s1 levels such that dðD1Þ is a
Dðr1,c,s1Þðr24r1,s24s1Þ. Then D, or more precisely ðD,D1,dÞ, is called a nested difference matrix (Qian et al., 2009a). For
two matrices A¼ ðaijÞ of order n� r and B of order m� g whose entries are all from an Abelian group A, define their
Kronecker sum to be A� B¼ ðBaij Þ, where Bk

¼ ðBþkJÞ and J is the m� g matrix of ones. The rule of Kronecker sum combined
with the difference matrices can became a simple but powerful tool for the construction of orthogonal arrays of strength
two. The following lemma is an example.

Lemma 2 (Bose and Bush, 1952). Let A be an OAðn,m,s,2Þ and D be a difference matrix Dðr,c,sÞ whose elements are all from an

Abelian group A, then A� D is an OAðrn,cm,s,2Þ.

Latin hypercube and OA-based Latin hypercube. An n�m matrix L¼ ðlijÞ is called a Latin hypercube with n runs and m

factors if each column of L is a permutation of 0, . . . ,n�1. Let A be an OAðn,m,s,tÞ with its s levels being denoted by
0, . . . ,s�1, then in every column of A, each level occurs q¼ n=s times. For each column of A, if we replace the q zeros by a
permutation of 0, . . . ,q�1, replace the q ones by a permutation of q, . . . ,2q�1, and so on, we obtain an OA-based Latin
hypercube (Tang, 1993). In addition to achieving maximum stratification in one dimension, OA-based Latin hypercubes
achieve stratification in krt dimensions.

This paper is organized as follows. Section 2 presents a general method for constructing nested difference matrices. In
Section 3, we provide a construction of nested space-filling designs. There are some comparisons and concluding remarks
in Section 4.

2. Construction of nested difference matrices

In this section, we propose an approach based on special multiplication tables of Galois fields to construct nested
difference matrices. The method is flexible to construct more nested difference matrices which are different from those
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given by Qian et al. (2009a) and Qian and Ai (2010). For convenience in presentation, we use fg(x) to denote the residue of
f(x) modulo g(x) as Qian et al. (2009b) did. The following lemma will be critical to the proofs of Theorems 1 and 2 below.

Lemma 3. Suppose gi(x) is an irreducible polynomial that defines Fi ¼ GFðsiÞ, si ¼ pui for i¼1,2 and u1ou2. Let r be a projection

from F ¼ ff ðxÞ ¼ a0þa1xþ � � � þatxt 9 tZ0,ai 2 GFðpÞg to F1 as rðf ðxÞÞ ¼ ðf g2
Þg1
ðxÞ. Then we have:
(1)
 for any f 1ðxÞ,f 2ðxÞ 2 F, rðf 1ðxÞþ f 2ðxÞÞ ¼ rðf 1ðxÞÞþrðf 2ðxÞÞ;

(2)
 if A is an OAðn,m,s2,tÞ defined on F2, then rðAÞ ¼ ðrðaijÞÞ is an OAðn,m,s1,tÞ defined on F1;

(3)
 if D is a Dðr,c,s2Þ defined on F2, then rðDÞ ¼ ðrðdijÞÞ is a Dðr,c,s1Þ.
Proof. (1) Suppose f 1ðxÞ ¼ q1ðxÞg2ðxÞþr1ðxÞ, f 2ðxÞ ¼ q2ðxÞg2ðxÞþr2ðxÞ, r1ðxÞ ¼ n1ðxÞg1ðxÞþm1ðxÞ and r2ðxÞ ¼ n2ðxÞg1ðxÞþm2ðxÞ,
where @ðriðxÞÞo@ðg2ðxÞÞ, @ðmiðxÞÞo@ðg1ðxÞÞ for i¼ 1;2, and @ðf ðxÞÞ denotes the degree of polynomial f(x). Then

rðf 1ðxÞþ f 2ðxÞÞ ¼ ððf 1þ f 2Þg2
Þg1
¼ ðr1þr2Þg1

¼m1þm2,

rðf 1ðxÞÞþrðf 2ðxÞÞ ¼ ððf 1Þg2
Þg1
þððf 2Þg2

Þg1
¼ ðr1Þg1

þðr2Þg1
¼m1þm2,

thus rðf 1ðxÞþ f 2ðxÞÞ ¼ rðf 1ðxÞÞþrðf 2ðxÞÞ.
(2) For any t columns aj,j¼ 1, . . . ,t, of A and any t-tuple ðb1, . . . ,btÞ,bi 2 F1, if we can prove that ðb1, . . . ,btÞ occurs n=st

1

times in the submatrix ½rða1Þ, . . . ,rðatÞ�, then the conclusion will be true. Let

Bi ¼ ff ðxÞ9f ðxÞ 2 F2,rðf ðxÞÞ ¼ big and

B¼ fðf 1ðxÞ, . . . ,f tðxÞÞ9f iðxÞ 2 Bi,i¼ 1, . . . ,tg:

Obviously, 9B9¼ st
2=st

1, where 9B9 denotes the cardinality of B. Since A is an OAðn,m,s2,tÞ, any t-tuple ðf 1ðxÞ, . . . ,f tðxÞÞ occurs
n=st

2 times as the rows of submatrix ða1, . . . ,atÞ, therefore, ðb1, . . . ,btÞ occurs ðn=st
2Þ9B9 times, i.e., n=st

1 times as the rows of
submatrix ½rða1Þ, . . . , rðatÞ�.

(3) Suppose dj ¼ ðd1j, . . . ,drjÞ
0 for j¼ 1;2 are any two columns of D, then the vector difference between these two columns

contains each element of F2 equally often. Thus the vector rðd1Þ�rðd2Þ ¼ rðd1�d2Þ ¼ ðd1�d2Þg1ðxÞ
contains each element of

F1 equally often, i.e., rðDÞ ¼ ðrðdijÞÞ is a Dðr,c,s1Þ. &

For a scalar a and a matrix or a set A, let aþA denote the element-wise sum of a and A. Suppose F2 is as defined in
Lemma 3, and let

E1 ¼ ff ðxÞ 2 F29@ðf ðxÞÞru1�1g:

It is obvious that E1 is a subgroup of F2 under operation ‘þ ’, then F2 can be decomposed as

F2 ¼ E1 [ ðg1þE1Þ [ � � � [ ðgs2=s1�1þE1Þ where g 2 G and

G¼ fg9g¼ au2�1xu2�1þ � � � þau1
xu1 ,ai 2 GFðpÞ,i¼ u1, . . . ,u2�1g

¼ fg0 ¼ 0,g1, . . . ,gs2=s1�1g:

Note that F1 and E1 have the same entries, but are defined on different Galois fields, i.e. GFðs1Þ and GFðs2Þ, respectively.
Define

C ¼ ff ðxÞ 2 E19@ðf ðxÞÞru2�u1g,

then it is easy to see that

9C9¼
9E19¼ pu1 ¼ s1 if 2u1ru2þ1,

pu2�u1þ1 otherwise:

(
ð1Þ

Now, let us construct an s2 � 9C9 array D as follows.

Algorithm 1. Step 1. Label the columns of D with the elements of C, and label the first s1 rows of D with the elements of E1,
the next s1 rows with the elements of g1þE1, and so on.

Step 2. Define the entry of D in the row labeled with d 2 F2 and the column labeled with b 2 C to be the product of d and
b, i.e., db.

Step 3. Then D has the row partition configuration ðD011, . . . ,D01,s2=s1
Þ
0, where D1i is an s1 � 9C9 matrix.

From Lemmas 1 and 3, we can obtain the following result.

Theorem 1. Let D¼ ðD011, . . . ,D01,s2=s1
Þ
0 be the array constructed above and D1 ¼ ðD

0
11, . . . , D01kÞ

0 with kos2=s1, then D is a

Dðs2,9C9,s2Þ defined on F2, rðD1iÞ is a Dðs1,9C9,s1Þ defined on F1 for i¼ 1, . . . ,s2=s1, rðD1Þ is a Dðks1,9C9,s1Þ defined on F1, and

ðD,D1,rÞ is a nested difference matrix, where 9C9 is given in (1).

Example 1. Let p¼ 2,u1 ¼ 1,u2 ¼ 2,s1 ¼ pu1 ¼ 2,s2 ¼ pu2 ¼ 4. We use g2ðxÞ ¼ x2þxþ1 to define F2 ¼ GFðs2Þ ¼ f0;1,x,xþ1g,
g1ðxÞ ¼ x to define F1 ¼ GFðs1Þ ¼ f0;1g. Then E1 ¼ f0;1g, C ¼ f0;1g, G¼ f0,xg, and we can obtain a difference matrix
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Dð4;2,4Þ as

Here rð0Þ ¼ 0,rð1Þ ¼ 1,rðxÞ ¼ 0,rðxþ1Þ ¼ 1, then

rðDÞ ¼

0 0

0 1

0 0

0 1

0
BBB@

1
CCCA

is a Dð4;2,2Þ defined on GFð2Þ. Thus ðD,D1,rÞ is a nested difference matrix.

3. Construction of nested space-filling designs

In this section, we use Lemma 2 to construct nested space-filling designs.

Algorithm 2. Step 1. Let ðD¼ ðD01,D02Þ
0,D1,rÞ be the nested difference matrix constructed in Theorem 1, A1 be an

OAðn,m,s2,2Þ with levels taken from F2 and A¼ ððD1 � A1Þ
0,ðD2 � A1Þ

0
Þ
0. Then from Lemma 2, A is an OAðns2,m9C9,s2,2Þ.

Step 2. Relabel the levels of A as follows. Partition the s2 ¼ pu2 levels of A into s1 ¼ pu1 groups according to the scheme that
two levels f 1ðxÞ and f 2ðxÞ belong to the same group if f 1ðxÞ ¼ f 2ðxÞ ðmod g1ðxÞÞ. Arbitrarily label the s1 groups as groups
1, . . . ,s1, and the s2=s1 levels within the ith group as ði�1Þs2=s1, . . . ,is2=s1�1 for i¼ 1, . . . ,s1.

Step 3. Use A to obtain an OA-based Latin hypercube S, then S has the configuration S¼ ðV 01,V 02Þ
0 corresponding to A.

Algorithm 2 gives the construction method of space-filling designs. And the s2 levels of A are labeled in the same way as
in Qian et al. (2009b).

Theorem 2. Suppose S is constructed in Algorithm2, then Dl ¼ S and Dh ¼ V1 satisfy the three principles given in Section 1. In

addition, Dh and Dl not only achieve stratification in any one dimension, but also achieve stratification on s1 � s1 grids and

s2 � s2 grids in two dimensions, respectively.

Proof. Note that, for any two levels f 1ðxÞ and f 2ðxÞ of A, the necessary and sufficient condition for f 1ðxÞ and f 2ðxÞ being
partitioned into a common group is rðf 1ðxÞÞ ¼ rðf 2ðxÞÞ. Thus, if we can prove that rðD1 � A1Þ is an OAðnks1,m9C9,s1,2Þ, then
the conclusion will be true. Since from Theorem 1, rðD1Þ is a Dðks1,9C9,s1Þ defined on F1, then based on Lemmas 2 and 3,
rðD1 � A1Þ ¼ rðD1Þ � rðA1Þ is an OAðnks1,m9C9,s1,2Þ. &

Example 2 (Example 1 continued). Step 1. Let A1 be an OAð16;5,4;2Þ defined on GFð4Þ as shown in Table 1, then A¼ ððD1 � A1Þ
0,

ðD2 � A1Þ
0
Þ
0 is an OAð64;10,4;2Þ. It can be easily seen that rðDi � A1Þ is an OAð32;10,2;2Þ,i¼ 1;2.

Step 2. We relabel the levels f0;1,x,xþ1g of A according to the scheme in Algorithm 2. The generated Latin hypercube
S¼ ðV 01,V 02Þ

0 is listed in Table 2.
Step 3. Take Dl ¼ S,Dh ¼ V1, and plot the bivariate projections of S. For saving space, we only present four plots in Fig. 1

which shows that the points of bivariate projections of Dh and Dl achieve stratification on 2�2 grids and 4�4 grids,
respectively.

Remark 1. In Example 2, A1 is an OAð16;5,4;2Þ and A has configuration

A1 A1

A1 1þA1

A1 xþA1

A1 xþ1þA1

0
BBBB@

1
CCCCA,

then the bivariate projection on the ith and jth columns of V1 or V2 achieves stratification on

4� 4 grids in two dimensions if 1r i,jr5 or 6r i,jr10

or 1r ir5;6r jr10 and jaiþ5,

2� 2 grids in two dimensions if 1r ir5, j¼ iþ5:

8><
>:

Refer to Fig. 1 for the illustrations of these cases.



Table 2

S¼ ðV 01 ,V 02Þ
0 in Example 2.

V1 V2

Run 1 2 3 4 5 6 7 8 9 10 Run 1 2 3 4 5 6 7 8 9 10

1 26 59 2 43 46 52 48 11 18 1 33 25 61 0 46 37 6 34 18 2 29

2 18 26 52 4 59 53 12 58 10 36 34 27 23 61 1 52 4 24 34 31 55

3 30 45 42 54 22 62 36 30 57 58 35 31 41 36 61 29 11 62 0 35 45

4 21 5 28 30 13 58 30 32 47 28 36 23 3 21 28 7 12 2 48 58 2

5 61 51 54 19 18 31 56 57 42 57 37 56 49 50 29 30 44 37 41 62 33

6 59 30 14 62 0 30 1 13 60 16 38 51 20 8 50 9 46 16 26 36 4

7 52 43 29 3 42 16 44 42 5 11 39 54 32 23 2 32 35 52 55 20 27

8 63 14 34 35 61 28 29 17 21 39 40 62 0 45 38 60 42 4 10 3 61

9 40 58 40 15 3 2 57 24 9 20 41 32 56 46 5 11 60 47 8 29 7

10 46 25 18 45 20 8 6 40 27 50 42 34 22 20 47 31 55 31 51 14 38

11 37 39 3 25 51 7 45 3 44 37 43 41 47 6 27 55 51 51 25 49 48

12 35 11 49 58 43 15 23 49 52 14 44 42 6 57 51 45 48 14 46 34 23

13 11 57 17 59 58 40 55 45 61 47 45 3 48 22 56 56 18 32 56 40 53

14 2 24 44 22 40 33 9 29 39 8 46 14 28 35 17 33 19 18 14 56 22

15 1 34 60 33 10 34 46 52 17 21 47 0 44 53 42 12 22 61 35 12 3

16 12 10 5 12 23 32 21 9 15 63 48 4 2 15 11 16 21 0 23 24 35

17 20 60 7 37 34 25 10 59 46 60 49 28 63 12 44 35 41 17 43 48 34

18 19 17 48 9 63 29 60 1 55 19 50 22 31 62 14 57 43 33 31 37 0

19 17 36 32 53 26 17 28 47 7 10 51 24 42 37 52 19 36 5 60 22 25

20 16 1 27 21 2 26 35 16 26 40 52 29 4 19 16 6 39 50 7 0 56

21 60 54 56 18 21 54 11 6 28 15 53 48 53 59 26 25 0 27 20 1 31

22 50 27 4 57 5 50 58 62 6 44 54 49 21 13 48 15 14 39 33 25 54

23 55 46 25 0 36 59 22 28 54 59 55 53 38 30 6 44 3 8 2 33 46

24 58 12 38 40 50 56 42 37 32 17 56 57 9 33 39 49 5 53 61 51 9

25 44 52 43 8 1 38 7 38 50 43 57 45 50 47 10 14 27 20 54 45 52

26 43 19 31 34 17 45 63 27 41 6 58 33 29 24 32 24 23 40 5 63 18

27 39 33 10 24 62 37 19 50 16 30 59 47 37 11 23 54 20 3 36 13 5

28 36 15 58 49 47 47 41 15 4 51 60 38 13 63 55 39 24 59 22 23 32

29 8 62 26 60 48 13 15 21 11 26 61 9 55 16 63 53 61 26 12 30 13

30 6 18 41 20 41 9 49 39 19 49 62 10 16 39 31 38 63 38 63 8 42

31 13 40 55 36 8 10 25 4 43 41 63 7 35 51 41 4 49 13 19 53 62

32 15 8 1 7 28 1 43 53 59 12 64 5 7 9 13 27 57 54 44 38 24

Table 1
A1 in Example 2.

1 2 3 4 5

0 0 0 0 0

0 1 1 x xþ1

0 x x xþ1 1

0 xþ1 xþ1 1 x

1 0 1 1 1

1 1 0 xþ1 x

1 x xþ1 x 0

1 xþ1 x 0 xþ1

x 0 x x x

x 1 xþ1 0 1

x x 0 1 xþ1

x xþ1 1 xþ1 0

xþ1 0 xþ1 xþ1 xþ1

xþ1 1 x 1 0

xþ1 x 1 0 x

xþ1 xþ1 0 x 1

F. Sun et al. / Journal of Statistical Planning and Inference 143 (2013) 160–166164
4. Discussion and concluding remarks

We have presented a general approach to constructing nested space-filling designs for experiments with two levels of
accuracy or fidelity using nested difference matrices. These designs are easy to construct and achieve stratification in two
dimensions, which are popular in physical vs. computer experiments or detailed vs. approximate computer experiments.
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Fig. 1. Some bivariate projections among columns x1 , . . . ,x10 of S in Example 2 (Vi: block Vi ,i¼ 1;2Þ.

Table 3
Comparisons between the nested difference matrices constructed by QAW and PM.

Methods D D1
a Constraints

I Dðpmþ1 ,p2 ,pmþ1Þ Dðpm ,p2 ,pmÞ

II Dðpmþ2 ,p2 ,pmþ2Þ Dðpm ,p2 ,pmÞ mZ2

QAW III Dðpmþ2 ,p3 ,pmþ2Þ Dðpmþ1 ,p3 ,pmÞ p¼ 2;3

IV Dðpmþ3 ,p3 ,pmþ3Þ Dðpmþ1 ,p3 ,pmÞ

V Dðpmþ3 ,p4 ,pmþ3Þ Dðpmþ2 ,p4 ,pmÞ

QA Dðpu2 ,pu1 ,pu2 Þ Dðpu1 ,pu1 ,pu1 Þ u1 ou2 ,u19u2

PM Dðpu2 ,9C9,pu2 Þ Dðkpu1 ,9C9,pu1 Þ u1 ou2 ,kopu2�u1

9C9¼
pu1 for 2u1 ru2þ1

pu2�u1 þ1 for 2u1 4u2þ1

(

p is any prime number

a D1 is nested in D.
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Note that Qian et al. (2009a) and Qian and Ai (2010) also used nested difference matrices to construct nested space-
filling designs. Now we give some comparisons among the nested difference matrices constructed by Qian et al. (2009a)
(QAW), Qian and Ai (2010) (QA) and the proposed method (PM), the results are listed in Table 3. From this table, we can
see that all the nested difference matrices obtained by QA can be generated by the proposed method. In addition, it can be
easily verified that, by taking p¼2,3 and some specific values for u1,u2 and k, the proposed method can generated almost
all the nested difference matrices obtained by QAW, except for their case III with m¼2, case IV with m¼2, and case V with
m¼2,3. For instance, by taking u1 ¼m,u2 ¼mþ2,k¼ 1 and p¼2,3, we can construct nested difference matrices
D¼Dðpmþ2,p2,pmþ2Þ, D1 ¼Dðpm,p2,pmÞ for m¼2, and D¼Dðpmþ2,p3,pmþ2Þ, D1 ¼Dðpm,p3,pmÞ for m42, which include all
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the matrices constructed in case II of QAW. Obviously, the proposed method has a more flexible choice of the parameters
p, u1,u2 and k, and thus can generated much more new nested difference matrices.

Given an OAðn,m,pu2 ,tÞ, the proposed method can generated nested space-filling designs Dh and Dl with m9C9 factors,
nkpu1 and npu2 runs, respectively, where p is a prime power, u1ou2, kopu2�u1 and 9C9 is defined in (1). Usually, a larger
value of t or (and) k may result in a more accurate surrogate model. In practice, the values of k and t can be chosen
according to the experimental and economic considerations.

Basically, the study of multi-fidelity experiments involves two aspects, the experimental planning and surrogate model
building. The design of a computer experiment often involves exploring a broad design space or region of design variable
values. We want a design method to give a trade-off between the accuracy of a surrogate model and the resources needed
to build it. The nested space-filling designs constructed in this paper can solve this trade-off problem. The design Dl can be
used to conduct approximate simulations and the design Dh can be used to conduct detailed simulations. Since Dh � Dl, we
can refine the surrogate model obtained based on Dl by incorporating the data from Dh to obtain a more accurate
prediction model. To integrate the results from the detailed and approximate simulations, Qian et al. (2006) proposed a
two-step approach based on the Gaussian process modeling, which can be illustrated using the design S¼ ðV 01,V 02Þ

0

constructed in Table 2 as follows: (1) fit a Gaussian process model based on the data obtained by conducting the
approximate simulations using S (i.e., Dl); (2) adjust the fitted model with the data obtained by conducting the detailed
simulations using V1 (i.e., Dh). Details can refer to Qian et al. (2006).

One of the referees brought the designs based on Sobol sequences to our attention. Such designs were recently
proposed by Challenor (2011) for computer experiments that involve switches. They may also be used for conducting
multi-fidelity experiments, but usually the designs cannot achieve stratification in two or more dimensions, though the
stratification in one dimension can be achieved. As for the comparison with the proposed designs in terms of reducing
uncertainty of surrogate models, further study need to be carried out in the future research.

Recently, Qian and Wu (2009) suggested to use a sliced space-filling design to conduct a computer experiment with
qualitative and quantitative factors. Since the difference matrices have the row partition configuration D¼ ðD011, . . . , D01,s2=s1

Þ
0

(cf. Theorem 1), and by noting that rðD1i � A1Þ is an OAðns1,m9C9,s1,2Þ for i¼ 1, . . . ,s2=s1, then it is easy to obtain a sliced
space-filling design from ððD11 � AÞ0, . . . ,ðD1,s2=s1

� AÞ0Þ0. Thus, the resulting designs obtained by the proposed method can also
be used to conduct computer experiments with qualitative and quantitative factors. For the analysis of computer
experiments with both quantitative and qualitative input variables, refer to Han et al. (2009) and the references therein.
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